

- 1 Ice core records of biomass burning tracers (levoglucosan, dehydroabietic and
- 2 vanillic acids) from Aurora Peak in Alaska since 1660s: A new dimension of
- 3 forest fire activities in the Northern Hemisphere
- 4
- 5 Ambarish Pokhrel^{1, 3}, Kimitaka Kawamura^{1, 2,*}, Kaori Ono¹, Akane Tsushima¹,
- 6 Osamu Seki¹, Sumio Matoba¹, Takayuki Shiraiwa¹ and Bhagawati Kunwar²
- 7 ¹Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
- 8 ²Now at Chubu Institute for Advanced Studies, Chubu University, Kasugai, Japan
- 9 ³Asian Research Center, Kathmandu, Nepal
- 10 *Corresponding author
- 11 Email address: kkawamura@isc.chubu.ac.jp
- 12
- 13 To be submitted to Atmospheric Chemistry and Physics (ACP)
- 14

2

15 Abstract

- 16 A 180 m long (ca. 274 years) ice core was drilled in the saddle of the Aurora
- 17 Peak of Alaska (63.52°N; 146.54°W, elevation: 2,825 m). The ice core samples were
- 18 melt, concentrated and then derivatized with N,O-bis-(trimethylsilyl)
- 19 trifluoroacetamide with 1% trimethylsilyl chloride and pyridine followed by gas
- 20 chromatography/mass spectrometry analyses. Levoglucosan, dehydroabietic acid, and
- 21 vanillic acid are reported for the first time from the alpine glacier to better understand
- 22 historical biomass burning activities in the source region of southern Alaska. These
- 23 organic compounds showed higher concentrations with many sporadic peaks in the
- 24 1660s-1830s, 1913, and 2005. Moreover, there are few discrepancies of higher spikes
- among them after the 1970s with sporadic peaks in 1994-2007 for dehydroabietic acid.
- 26 Historical trends of levoglucosan, dehydroabietic and vanillic acid showed that
- 27 biomass burning activities from resin and lignin in boreal conifer trees, other higher
- 28 plants and grasses were significant before the 1840s and after the 1970s in the source
- 29 regions of southern Alaska, being different from previous ice core studies. Long-
- 30 range atmospheric transport could be important for levoglucosan compared to
- 31 dehydroabietic acid in the North Pacific Rim (NPR). We found weak or no
- 32 correlations of levoglucosan with NO₂⁻ (r=0.06), NO₃⁻ (0.04), nss-SO₄²⁻ (0.08), nss-K⁺
- 33 (0.11), and NH_4^+ (0.11) from the same ice core, suggesting that these anions and
- 34 cations do not represent a gleaming signal of biomass burning activities in the source
- 35 regions for southern Alaska. Hence, this study revels a new dimension of biomass
- 36 burning periodic cycles in the NPR.
- 37

3

38 **1. Introduction**

39	Ice core records provide the long-term changes in deposition and
40	concentration of biomass burning organic (e.g., formate, acetate, dicarboxylic acid,
41	pyruvic acid and α -dicarbonyls) and inorganic (e.g., NH ₃ ⁺ , SO ₄ ⁻²⁻ , NO ₃ ⁻ and NO ₂ ⁻)
42	atmospheric chemical species, which are reported elsewhere (Giorio et al., 2018;
43	Wolff et al., 2012; Kawamura et al., 2012; Lamarque et al., 2010; Kaufmann et al.,
44	2010; Andreae and Merlet, 2001; Legrand and Mayewski, 1997; Yang et al., 1995).
45	Biomass burning activities such as forest fires and residential heating have some
46	extent on climate change effect (Keywood et al., 2011; Whitlow et al., 1994). Many
47	studies have shown that there is some discrepancy of temporal and spatial biomass
48	burning activities (Kawamura et al., 2012; Whitlow et al., 1994; Kaplan et al., 2010
49	and references therein) in the Northern and Southern Hemisphere (NH/SH). These
50	studies found different atmospheric transport patterns from source region to sampling
51	site for different ice core records (Whitlow et al., 1994), which can alter the glacio-
52	chemical cycle in the NH and SH.
53	There are a few studies of specific organic tracers of biomass burning for an
54	ice core, such as levoglucosan (1,6-anhydro- β -D-glucopyranose), which is pyrolysis
55	product of cellulose and hemicellulose); dehydroabietic acid (1-
56	phenanthrenecarboxylic acid) and vanillic acid (4-hydroxy-3-methoxybenzoic acid);
57	and other compounds (e.g. mannosan and galactosan) in the NH (Kawamura et al.,
58	2012). Kawamura et al. (2012) first reported these specific biomass burning tracers
59	(levoglucosan, dehydroabietic and vanillic acid) for an ice core (AD 1693-1997),
60	collected from the Kamchatka Peninsula near the eastern coast of Russia (56°04'N,
61	160°28'E, Elevation: 3,903 m).

62 This paper reports three compounds in an ice core, which was collected from 63 the Aurora Peak of southern Alaska (APA), inland of the northeast Pacific Ocean. The 64 study covers 1665-2008 to better understand the historical atmospheric transport 65 variability between the western North Pacific region (Kawamura et al., 2012) and 66 eastern North Pacific region (this study) from source regions. Particularly, 10 day 67 backward trajectory from 1992-2002 showed that southern Alaska can receive air masses from the North Pacific Regions, East Asia, Eastern Russia-Siberia, higher 68 latitudes of Alaskan regions, Japan, and Canadian regions in the troposphere (>300 69 70 hPa) (Yasunari and Yamazaki, 2009). Similarly, the Kamchatka Peninsula also can 71 receive air masses from Siberia, Far East, North China and Eastern Europe² 72 (Kawamura et al., 2012). 73 2. Materials and Methods 74 An ice core (180 m deep, 274 years old) was drilled in the saddle of the 75 Aurora Peak of southern Alaska, which is located at 63.52°N, 146.54°W, elevation: 76 2,825 m (Figure 1). This 180 m long core was divided into \sim 50 cm pieces and directly transported to the laboratory of the Institute of Low Temperature Science (ILTS), 77

78 Hokkaido University, Japan and stored in a dark cold room at - 20°C until analysis.

79 The ice core ages were determined by using annual counting of hydrogen isotopes

 (δD) and Na⁺ seasonal cycles (Tsushima, 2015; Tsushima et al., 2015). These ice core

samples were shaved off $(\sim 5 - 10 \text{ mm})$ on a clean bench at -15°C in a cold room. A

- 82 ceramic knife was used to avoid a possible adsorbed contamination during sample
- 83 collection using the method previously reported (Kawamura et al., 2012; Pokhrel et
- 84 al., 2015). These scraped samples were kept for 24 hours in a container in a standard
- 85 clean room and were transferred into 800 ml glass bottles. All steps are followed as
- 86 reported previously prior to analyses (Pokhrel et al., 2015; Pokhrel, 2016; Kawamura

- 5
- et al., 2001). Total number of ice core sections was 147 (50 cm long, one quarter cut);
- i.e., sampling frequency was ~40% of 180 m deep ice core.
- 89 These melt ice core samples (150 mL) were concentrated to almost dryness
- 90 using a rotary evaporator under a vacuum in a pear shape flask (300 ml) and extracted
- 91 by a mixture of CH₂Cl₂/CH₃OH (2:1) using an ultrasonic bath (Kawamura et al.,
- 92 2012). The total dissolved and particulate organic matter was further eluted with
- 93 CH₂Cl₂ and methanol to extract the organic compounds adsorbed on the particles as
- 94 reported previously (Fu et al., 2008; Simoneit et al., 2004). The extract and eluents
- 95 were transferred to 1.5 mL glass vials and again dried under a nitrogen stream.
- 96 Extracts were derivatized with 99% N, O-bis-(trimethylsilyl) trifluoroacetamide
- 97 (BSTFA) +1%trimethylchlorosilane (TMCS) at 70°C for two hours (Kawamura et al.,
- 98 2012). The derivatized fractions were further dissolved in n-hexane and determined
- 99 by gas chromatography/mass spectrometry (GC/MS) using a capillary column (HP-
- 100 5MS, 30 m \times 0.32 mm I.D. \times 0.25 μ m film thickness) installed with a split/splitless
- 101 injector (Kawamura et al., 2012). Levoglucosan, dehydroabietic acid and vanillic acid
- 102 were determined using GC/MS by comparing the authentic standards and mass
- 103 spectral data of NIST/Willey library as external standards. More details are reported
- 104 elsewere (Fu et al., 2008; Simoneit et al., 2004).
- 105 We conducted triplicate analyses for three real ice core samples to check the
- 106 uncertainity in the determinations of concentrations. The uncertainity (standard
- 107 deviation) of levoglucosan, dehydroabietic and vanillic acid were 6.72, 0.74 and
- 108 2.40 %, respectively. Moreover, recovery of traject compounds were better than 85%.
- 109 To identify the physical functioning fire smoldering spot as possible source
- 110 regions of biomass burning events, we prepared annual composite maps (2001 to
- 111 2008 AD) of the Moderate Resolution Imaging Spectroradiometer (i.e. MODIS)

- 6
- 112 effective hot spot from the Earth Observing System Data and Information System
- 113 (EOSDIS) using the Terra and Aqua satelllites of NASA
- 114 (https://earthdata.nasa.gov/data/near-real-time-data/forms/).

115 3. Results and Discussion

- 116 Anhydromonosaccharides can lead an important fraction of water-soluble
- 117 organic carbon (Gao et al., 2015; Verma et al., 2015). It is produced from the
- 118 pyrolysis and/or combustion of cellulose and/or hemi-cellulose from wildfires and
- 119 domestic wood fires (Simoneit, 2002) at temperatures above 300 °C (Simoneit et al.,
- 120 2002; Fraser and Lakshmanan, 2000; Shafizadeh, 1984). Many studies have shown
- 121 that levoglucosan ($C_6H_{10}O_5$) is the most abundant anhydrous monosaccharide
- 122 (Simoneit, 2002; Kuo et al., 2011; Hoffmann et al., 2010; Engling et al., 2006;),
- 123 which is tracked by other species of anhydromonosaccharides; e.g. mannosan (1,6-
- 124 anhydro- β -D-mannopyranose; C₆H₁₀O₅), galactosan (1,6-anhydro- β -D-
- 125 galactopyranose; C₆H₁₂O₆) and/or dehydroabietic acid (C₂₀H₂₈O₂). Such specific
- 126 factors and the sources (i.e., distribution) can make levoglucosan a unique tracer
- 127 (Jordan et al., 2006; Simoneit et al., 1999) in the source regions of southern Alaska
- 128 because the saddle of the Aurora Peak is far from the biomass burning source regions,
- as shown in Figure 1.
- 130 3.1 Levoglucosan
- 131 This study showed that concentrations of levoglucosan are 8.6 times higher
- 132 (range: BDL-20800, average: 543±2340ng/L) than those of dehydroabietic acid
- 133 (range: BDL-556, ave. 62.0±97.2 ng/L) and four hundred times higher than those of
- 134 vanillic (C₈H₈O₄) acid (range: BDL-18.6, ave. 1.51±2.96ng/L) for 1665-2008. It
- 135 should be noted that combustion of lignite (lignite includes fossilized cellulose) or
- 136 hemicellulose emits levoglucosan and its isomers; e.g., mannosan and glactosan (Kuo

137	et al., 2011; Hoffmann et al., 2010). However, we did not detect these isomer
138	compounds at a significant concentration (ranges: BDL-0.0) in this study. Thus,
139	levoglucosan/mannosan mass ratios (L/M) could be relatively high. In contrast many
140	aerosol samples showed significant concentrations of these isomers and levoglucosan
141	are reported in many aerosol samples collected from the oceans via "round-the-world
142	cruise" (Fu et al., 2011), Mt. Tai in the North China Plain (Fu et al., 2008), and urban
143	tropical India (Fu et al., 2010).
144	It should be noted that higher ratios of levoglucosan (L) to mannosan (M)
145	indicated a sifnificant contributions of deciduous forest fire activities (Kawamura et
146	al., 2012). For example, Kawamura et al. (2012) reported very low ratios of L/M
147	(range: $3.3 - 5.0$) for an ice core of the Kamchatka Peninsula in Northeast Asia
148	compared to lignite burning (30-90) at 200° C (Kuo et al., 2011), and aerosols samples
149	of Gosan site in south Korea (15-40, ave. 21) (Simoneit et al., 2004), suggesting
150	gymnosperm sources for anhydrosugars (Kawamura et al., 2012). Hence, we cannot
151	discuss more about the contributions of deciduous forest fire activities for our ice core
152	from the source regions of southern Alaska.
153	Insignificant concentrations of mannosan and galactosan in our ice core
154	indicate that combustion of lignite in the source regions of southern Alaska was minor.
155	These results suggest that contribution of lignite burning from East Asia, Eastern
156	Russia, Siberia, higher latitudes of Alaskan regions, Japan, and Canadian regions to
157	the ice core site was not significant. In contrast, western North Pacific ice core records
158	from the Kamchatka Peninsula (Kawamura et al., 2012) showed these anhydrosugars.
159	This suggests that western and eastern North Pacific regions could be influenced by
160	different air mass chemistry (e.g. lignite burning plume did not influence the southern
161	Alaskan glaciers) corresponding to other BB tracers. It should be noted that the

162	Kamchatka Peninsula's L/M ratios (range, 3.3-5.0) are close to those of gymnosperm
163	(conifer) burning. This is an evidence to suggest that lignite burning didn't alter the
164	Alaskan glacier's chemistry for 1665-2008.
165	It should be noted that degradation fluxes of levoglucosan in cloud droplets
166	and aqueous particles (deliquescent particles) by OH radicals have been reported
167	recently. For example, mean degradation fluxes were around 7.2 ng $m^{-3} h^{-1}$ in
168	summer and 4.7 ng $m^{-3} h^{-1}$ in winter (Hoffmann et al., 2010). Hence, we can
169	speculate that levoglucosan could be more stable compared to isomer compounds,
170	whose degradation fluxes are lower than 7.2 and/or 4.7 ng $m^{-3} h^{-1}$ (e.g., Fraser and
171	Lakshmanan, 2000; Hoffmann et al., 2010) during long-range atmospheric transport
172	from source points to southern Alaska. Stability of levoglucosan is further confirmed
173	in an aerosol chamber study with atmospheric lifetime of 0.7-2.2 days in summer
174	(Hennigan et al., 2010). These results demonstrate the biomass burning emissions in
175	source apportionment for the saddle of the APA.
176	Levoglucosan showed higher concentrations in around 1660s-1830s (Figure
177	2a) with sporadic peaks in 1678 (ice core depth in meter: 174.6 and concentration 593
178	ng/L), 1692 (172.2 m; 704), 1695 (170.3 m; 1250), 1716 (165.6 m; 990), 1750 (156.7
179	m; 913), 1764 (151.5 m; 1433), 1786 (147.3m; 7057), 1794 (146.1 m; 3302) and
180	1834 (138.4m; 944) above its average concentration (542 ng/L). These higher spikes
181	could be related to forest fire activities in the source regions of southern Alaska.
182	Source regions could be East Asia, Eastern Russia, Siberia, higher latitudes of
183	Alaskan regions, Japan, and Canadian regions (Yasunari and Yamazaki, 2009). For
184	instance, Ivanova et al. (2010) reported the frequency of heavy forest fires (e.g., borel
185	forest) in spring, summer and autumn in eastern Siberia, which is a potential source to
186	Alaska (Yasunari and Yamazaki, 2009). This study showed higher concentrations of

187	levoglucosan before 1840s (Figure 2a). Marlon et al. (2008) further confirmed that
188	there was heavy biomass burning between 1750s -1840s on a global scale, which is
189	linked to increasing anthropogenic activities (e.g., population growth and land-use
190	change).
191	Similalry, we detected high spikes in 1898 (120.7m; 577 ng/L), 1913 (114.8m;
192	20800), 1966 (77.7m; 692) and 2005 (13.7m; 598) above the average concentration
193	(542 ng/L). Figure 2a clearly shows lower concentrations level of Levoglucosan (less
194	than 542 ng/L) after 1830s (except for 1898, 1913, 1966 and 2005) compared to
195	before 1830s. This could be attributed to intensive grazing, agriculture and forest fire
196	management (Marlon et al., 2008; Eichler et al., 2011). It should be noted that
197	charcoal signals are scarce for Siberian regions compared to Northern American and
198	European ice core records (Eichler et al., 2011). We did not detect significant
199	conentrations of any isomers as we have discussed above. Moreover, two thirds of
200	Earth's borel forest (17 million km ²) lies in Russia, which is a potential source of
201	forest fires that could have significance on a global scale (Eichler et al., 2011; Isaev et
202	al., 2002).
203	Mt. Logan Canada, GISP2, and 20D (older than 1850s) ice core records of
204	Greenland are characterized by higher spikes of $\mathrm{NH_4^+}$ superimposed with a relatively
205	uniform summertime and wintertime minimum (Whitlow et al., 1994). These suggest
206	that ice core $\mathrm{NH_4}^+$ has common sources in the circumpolar regions. We got higher
207	spikes of levoglucosan before 1840s (Figure 2a), which is consistent with higher
208	spikes of NH_4^+ in 1770-1790 and 1810-1830 in the Mt. Logan data (e.g., Whitlow et
209	al., 1994). This comparison suggests similar source regions of NH_4^+ for different
210	sampling sites. In contrast, Mt. Logan data showed higher spikes of $\mathrm{NH_4}^+$ in the

211 intervals of 1850-1870 and 1930-1980, which is dissimilar (except for two points) to

212	our results from Aurora Peak (Figure 2a). It should be noted that Greenland records
213	(GISP2 and 20D) showed lower spikes of $\mathrm{NH_4^+}$ compared to Mt. Logan (Whitlow et
214	al., 1994) during these intervals (1850-1870 and 1930-1980), which is consistent to
215	the results of Aurora Peak (except for 1966), again suggesting similar source regions
216	(Whitlow et al., 1994; Davidson et al., 1993; Holdsworth et al., 1992). The potential
217	source regions for Greenland ice cores include northern North America, Europe and
218	Siberia. Simialry, Siberia, Alaska and British Columbia are likely source regions for
219	Mt. Logan (Whitlow et al., 1994; Davidson et al., 1993; Holdsworth et al., 1992).
220	Except for a few points, e.g., 1999 (436 ng/L) and 2005 (598 ng/L)),
221	concentrations of levoglucosan drastically decreased in 1980-2008. This infers that
222	forest fire activities could be controlled by many factors. For instance, Central and
223	East Siberian forest fire activities were controlled by strong climate periodicity, e.g.,
224	Arctic Oscillation (AO), El Nino, intensification of the hydrological cycle in central
225	Asia, and other human activities in the NH (Eichler et al., 2011; Robock, 1991;
226	Achard et al., 2008; Balzter et al., 2007; Wallenius et al., 2005). Eichler et al. (2009)
227	further confirmed that from 1816 to 2001 higher amounts of $\mathrm{NH_4}^+$ and formate
228	(HCOO ⁻) were directly emitted from biogenic sources rather than biomass burning
229	(Olivier et al., 2006) in the Belukha glacier in the Siberian Altai mountains. Similarly,
230	lower concentrations of charcoal between 1700 and 2000 in this Altai mountain
231	further suggest that forest fire activities were stronger than anthropogenic activities in
232	the source regions (Eichler et al., 2011).
233	Similarly, the sparsity of NH_4^+ spikes after 1920 in Greenland (GISP2 and
234	20D) suggest low intensity of biomass burning and/or significant deposition before
235	reaching Greenland from North America (Whitlow et al., 1994). This is similar to the
236	saddle of Aurora Peak, except for 1910 (20800 ng/L), which may be due to a point

237	source around Alaskan region. Higher spikes of NH_4^+ at Mt. Logan during 1900-1990
238	are likely originated from central and eastern Siberia (Robock, 1991), which is
239	dissimilar to the source regions in this study. Only the exception is 1966 (2000 ng/L),
240	suggesting that local biomass burning is also important in southern Alaska.
241	Above results and discussions suggest the subsequent evidences: (a) heavy
242	biomass burning could be activated in the source regions; (b) short range air mass
243	circulation could quickly reach souhtern Alaska, causing higher concentration of
244	levoglucosan; (c) dilution and/or scavenging of biomass plume enroute could be
245	maximized after 1830s; (d) a common NH summertime biomass burning plume (e.g.,
246	same ice core records of SO_4^{2-} , NO_3^{-} , NH_4^+ showed significant concentrations during
247	same periods) could be significantly deposited by short range atmospheric circulation
248	on the exposed surface area of the glaciers. These special events further suggest that
249	Alaskan glaciers can not preserve most biomass burning events in the circumpolar
250	regions, which occured in the source regions of Siberian and North America.
251	Hence, these historical records of levoglucosan before the 1830s suggest long
252	range atmospheric transport rather than short range transport from heavy forest fires.
253	For instance, forest fire intensity in 1660s-1830s could be induced by lightning during
254	drought seasons in the Siberian regions as well as extensive burning to clear land for
255	agriculture purposes in the NH (Whitlow et al., 1994 and reference therein). Declined
256	concentrations of levoglucosan trend after the 1830s (except for few points), showing
257	that sources could be changed significantly and/or forest fire activities could be
258	suppressed and/or controlled in 1830s-1980s (Whitlow et al., 1994). It should be
259	noted that mid to late 1800s are considered as the Little Ice Age (Mayewski et al.,
260	1993). Moreover, recent changes of the concentration trends in the Alaskan source
261	regions is thought to be climate driven (Whitlow et al., 1994 and reference therein).

12

262 **3.2 Dehydroabietic acid**

263	Dehydroabietic acid is produced by pyrolytic dehydration of abietic acid from
264	conifer resin. In other words, dehydroabietic acid is produced during the burning process
265	of conifer resins (Kawamura et al., 2012; Simoneit et al., 1993). It can be used as a
266	specific biomass-burning tracer for conifer trees and/or soft wood burning in an ice
267	core study. Dehydroabietic acid was detected as the second dominant species (range:
268	BDL-556, ave. 62.4±97.2 ng/L), whose concentrations are 9 times lower than
269	levoglucosan but more than 46 times higher than vanillic acid (range: BDL-18.6, ave.
270	1.51±2.96 ng/L). Dehydroabietic acid showed higher spikes in 1678 (ice core depth in
271	meter, 173.9m; 200 ng/L), 1716 (165.3 m; 67.5), 1728 (161.5 m; 139), 1732 (159.6
272	m; 233), 1738 (158.3 m; 113), 1750 (156.7 m; 66.9), 1764 (151.5 m; 331), 1786
273	(147.3 m; 386), 1794 (146.1 m; 78.6), 1913 (114.8 m; 101), and 1994-2007 (depth is
274	44.8-0.88 m), respectively having 92.8, 199, 141, 203, 136, 109, 98.4, 124, 174, 121,
275	298, and 555 ng/L.
276	These periods are consistent with those of higher spikes of levoglucosan,
277	except for a few points (e.g., 1734-1738) before 1990 (Figure 2a, b). The historical
278	trend of dehydroabietic acid concentrations is also similar to that of levoglucosan
279	concentrations before 1980, which is similar to Kamchatka ice core records. In
280	contrast, Kamchatka showed gradual increase of dehydroabietic acid (Figure 2b) after
281	the 1950s (e.g., Kawamura et al., 2012). These results suggest that biomass burning
282	plumes of pine, larch, spruce and fir trees in Siberian regions (Kawamura et al., 2012;
283	Ivanova et al., 2010) could not reach southern Alaska significantly compared to
284	Kamchatka, south eastern Russia.
285	Dehydroabietic acid concentrations after the 1980s were higher than
286	levoglucosan, which is similar to Kamchatka records. This further suggests that

287	biomass burning plumes from Siberian borel conifer trees could be transported to the
288	North Pacific regions (Kawamura et al., 2012). It also suggests that East Asian
289	regions (broad-leaf trees are common) could be important for levoglucosan rather
290	than dehydroabietic acid (boreal forest fires in Siberia, i.e., pine trees). It should be
291	noted that Alaska can receive different air masses from East Asia, Eastern Russia,
292	Siberia, higher latitudes of Alaskan regions, Japan, and Canadian regions in the
293	troposphere (>300 hPa) (Yasunari and Yamazaki, 2009) and Kamchatka-Peninsula
294	also can receive air masses from Siberia, Far East, North China and Eastern Europe
295	(Kawamura et al., 2012).
296	These results showed some similarity between levoglucosan records of
297	Kamchatka and Alaska (except for few points) and some discrepancy between
298	dehydroabietic acid records between these sampling sites. Kamchatka showed gradual
299	increase after the 1950s. Alaska showed this after the 1980s, suggesting that conifer-
300	burning plumes could be transported significantly to Kamchatka, but not southern
301	Alaska, in the 1950s – 1980s. There is another possibility for this particular
302	discrepancy of Kamchatka and Alaska: dehydroabietic acids could be decomposed
303	during long-range transport (Kawamura et al., 2012; Simoneit and Elias, 2001) from
304	Siberia before reaching southern Alaska (i.e. eastern North Pacific ice core) but not
305	before reaching Kamchatka (i.e. western North Pacific). The Kamchatka ice core also
306	doesn't show high spikes (except 1970) in the 1950s-1970s compared to before and
307	after those decades. Moreover, a correlation of levoglucosan with dehydroabietic acid
308	from 1665-1918 (R = 0.74) is better than from 1918-1977 (0.13) and 1977-2007
309	(0.36). These relations are weaker (0.39, 0.04, and 0.22, respectively) for vanillic acid,
310	except for 1913 and 1966 at all cases. The representing figures are shown in Figure
311	3a-c. Such types of lower spikes and/or sporadic peaks of levoglucosan and

- 312 dehydroabietic acid after the 1920s (Figure 2a,b) and these correlations suggest that
- 313 source regions should be different (e.g. east Asian broad leaf trees and Siberian source,
- 314 e.g. boreal forest/pine trees), and long range atmospheric transport is insignificant for
- 315 these historical concentration trends of dehydroabietic acid rather than levoglucosan
- 316 over the saddle of Aurora Peak at least after the 1920s. Annual composite maps
- 317 (Figure 5a-f) since 2001 to 2008 of the Moderate Resolution Imaging
- 318 Spectroradiometer (MODIS) supported our above results and discussion. For example,
- 319 levoglucosan (in 2005, 2006 and 2004 AD with 598.0, 130.8, and 95.30ng/L,
- 320 respectively), dehydroabetic acid (in 2007, 2004, and 2006 AD with 555.9, 309.7, and
- 321 298.1ng/L, respectively) and vanillic acid (in 2005, 2007 and 2006 with 18.57, 12.66,
- 322 and 7.27ng/L) showed descripency of higher spikes in the same years (Figure 5a-f)
- 323 suggested that they have different sources in the same years.
- 324 **3.3 Vanillic acid**
- 325 We detected vanillic acid (VA) in an ice core of the Aurora Peak (Figure 2c),
- 326 which is a biomass burning tracer of lignin (Simoneit et al., 1993). Particularly, VA
- 327 can be produced by incomplete combustion of conifer trees, i.e., conifer rich boreal
- 328 forest (Pokhrel, 2015; Simoneit et al., 1993). Figure 2c shows sporadic peaks of
- 329 lignin in 1672 (2.23 ng/L), 1678 (3.25), 1692 (3.23), 1695 (5.56), 1698 (1.50), 1732
- 330 (3.98), 1764 (1.56), 1786 (3.65), 1794 (1.35), 1814 (11.0), 1818 (5.50), 1913 (2.12),
- 331 1973 (5.52), 1989 (3.57), 1993 (2.66), 1996 (4.66), 1997 (3.57), 1999 (3.57), 2001
- 332 (3.26), and 2003-2007 (2.36, 2.07, 18.6, 7.27 and 12.6ng/L, respectively). We found
- 333 similar spikes of VA and levoglucosan during these periods (except for few points,
- e.g., 2004, 2006 and 2007). The Kamchatka ice core showed similar types of high
- spikes, except for a few points (e.g., 1972 and 1992).

336

337	woody parts of trees) and source regions could be similar (Kawamura et al., 2012),
338	that is, lignin and cellulose source regions of southern Alaska were simultaneously
339	significant, before the 1920s. This result infers long-range atmospheric transport was
340	insignificant at least after the 1920s, which could be somewhat similar to the
341	dehydroabietic acid as we have discussed above sections. For example, the
342	correlations (Figure 3a-c) between dehydroabietic acid and vanillic acid ($R \ge 0.80$) is
343	better than those of levoglucosan with dehydroabietic acid (0.36) and vanillic (except
344	for, 1999 and 2005) acid (0.22) after the Great Pacific Climate Shift (1977-2007). The
345	mean concentrations of dehydroabietic (127.9 ng/L-ice) and vanillic (2.29 ng/L-ice)
346	acids are secure with standard deviations (± 126 and ± 3.04 , respectively) compared to
347	levoglucosan (ave. 90.8±146 ng/g-ice) from 1977-2007. It suggests a short range
348	atmospheric transport, which could be from climate driven (Pokhrel et al., 2015b).
349	In other words, dehydroabietic acids and p-hydroxybenzoic acid (p-HBA)
350	could be more unstable compared to photo-degradation of levoglucosan during long
351	range transport. For instance, higher sensitivity of dehydroabietic acid was reported
352	compared to levoglucosan (Simoneit et al., 2002; Simoneit and Elias, 2001). It should
353	be noted that we did not detect p-HBA from the same ice-core sample, which can be
354	produced from incomplete combustion of grasses (Kawamura et al., 2012; Simoneit et
355	al., 2002). In constrast, we detected significant amounts of dehydroabietic acid from
356	1665-2007 (Figure 2b). Hence, we may speculate that p-HBA could be more unstable
357	compared to levoglucosan, dehydroabietic acid, and vanillic acid.
358	3.4 Comparison with ammonium, nitrite, nitrate and SO ₄ ²⁻

Similarity of higher spikes suggests that biomass combustion sources (e.g.,

359 There are many studies of organic compounds and major inorganic ions of360 biomass burning for aerosol samples in the NH, which are reported elsewhere

16

- 361 (Kunwar et al., 2016; Zhu et al., 2015; Cong et al., 2015; Kunwar and Kawamura,
- 362 2014; Lazaar et al., 2011; Kundu et al., 2010; Wang et al., 2009). In addition,
- 363 terephthalic acid could be a special tracer of plastic waste burning (Kawamura and
- 364 Pavuluri, 2010; Pavuluri et al., 2010; Kunwar and Kawamura, 2014b). Particularly,
- ammonium (NH_4^+) , nitrite (NO_2^-) , nitrate (NO_3^-) and sulfate (SO_4^{2-}) were used to
- 366 better understand the atmospheric signal of biomass burning and/or the Pioneer
- 367 Agriculture Revolution (PIA-GREV) in the NH. These results are reported elsewere
- 368 (Holdsworth et al., 1996, Legrand and Mayewski, 1997). For instance, a signal of

369 biomass burning is ammonium (e.g., ([NH₄]₂SO₄) in snow particles, which is a

- 370 constitute of forest fire smoke (Holdsworth et al., 1996; Tsai et al., 2013 and
- 371 references therein).

372 Similalry, levoglucosan is a unique biomass burning tracer (Simoneit, 2002).

- 373 We found weak correlations (R) of levoglucosan with $NO_2^-(0.06)$, $NO_3^-(0.04)$, nss-
- 374 SO_4^{2-} (0.08), nss-K⁺ (0.11), nss-Ca²⁺ (0.072), and NH₄⁺ (0.11) (Figure 4a-d), except
- for a few points (e.g., 1998 and 1999). The correlations of MSA⁻ with NO₃⁻ (0.64),
- unsaturated fatty acids, e.g., oleic ($C_{18:1}$) acid (0.70), and with other anions (nss-SO₄²⁻,
- 377 Cl⁺, F⁺, and Na⁺) are strong (≥ 0.71), suggesting that major ions can not represent
- 378 pristine biomass-burning signals at least in the North Pacific rim (NPR) (Pokhrel,
- 379 2015; Pokhrel et al., 2016). The multi-decadal cycles of NO_2^- , SO_4^{2-} and $CH_3SO_3^-$
- 380 from the same ice core may be controlled by climate variability and/or climate driven
- 381 forces in the NPR (Pokhrel, 2015; Pokhrel et al., 2016; Whitlow et al., 1994;).
- 382 Moreover, the historical trend of vanillic acid from 1800-2000 for Greenland ice core
- 383 (McConnell et al., 2007) is completely different with this study. Hence, this study
- 384 revels a new dimension of biomass burning periodic cycles in the NPR, which can
- alter the concept of other ice core studies in the NH.

17

386 4. Summary and Conclusions

387	Levoglucosan (ave. 543 ± 2343 ng/L), dehydroabietic (62.4 ± 97.2 ng/L) and
388	vanillic acid (1.36 ± 3.03 ng/L) are present in the ice core from saddle of Aurora Peak
389	in Alaska. They have been reported to better understand temporal trends of biomass
390	burning activities in the source region of southern Alaska. Levoglucosan showed
391	sporadic peaks during the 1660s-1830s, 1898, 1913, 1966, and 2005. Dehydroabietic
392	and vanillic acid showed similar historical trends with levoglucosan at least before the
393	1970s. Historical trends of levoglucosan, dehydroabietic acid, and vanillic acid
394	showed that biomass burning activities from resin and lignin boreal conifer trees and
395	other higher plants/grasses were significant before the 1830s and after the 1970s in
396	the source regions of southern Alaska, which is different with earlier study from
397	Kamchatka ice core. Correlations of levoglucosan with NO_2^- (r=0.06), NO_3^- (0.04),
398	nss-SO ₄ ²⁻ (0.08), nss-K ⁺ (0.11), nss-Ca ²⁺ (0.072), and NH ₄ ⁺ (0.11) from the same ice
399	core suggest that these anions and cations can not represent the gleaming signal of
400	biomass burning activities in the source regions for southern Alaska. These results
401	further suggest that forest fire signals in the NH are dependent on the source regions
402	and ice core sampling sites. Hence, it inquires about the long-range and/or short-range
403	atmospheric transport, which will be important for biomass burning tracers (i.e.,
404	levoglucosan, dehydroabietic and vanillic acid), cations, and anions.
405	Author contributions.
406	KK designed the research. TS and SM conducted ice core drilling. AT conducted ice
407	core dating. AP, KO and OS worked on ice core cutting for chemical analysis. AP
408	analyzed ice sections and BK supported data analysis. AP and KK wrote the
409	manuscript.

410 Aknowledgements

18

- 411 This study was partly supported by the Japan Society for the Promotion of Science
- 412 (JSPS) through grand-in-aid Nos. 19340137 and 24221001. We also aknowledge the
- 413 support from the Institute of Low Temperature Science, Hokkaido University for the
- 414 ice core program.

416	References
417	
418	Achard, F., Eva, H. D., Mollicone, D., and Beuchleet, R.: The effect of climate anomalies and
419	human ignition factor on wildfires in Russian boreal forests, Phil. Trans., R. Soc., B.,
420	363, 2329e2337, doi: 10.1098/rstb.2007.2203, 2008.
421	Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning.
422	Global Biogeochem, Cycle, 15, 955-966, 2001.
423	Balzter H Gerard F Weedon G Grev W Combal B Bartholome E Bartaley S and
424	Los S: Counting of vegetation growing season anomalies with hemispheric and
425	regional scale climate natterns in Central and East Siberia I. Clim. 20, 15, 3713e3729
426	doi: 10.1175/ICI I4226. 2007
420	Cong 7 Kawamura K Kang S and Fu P: Penetration of hiomass-hurning emissions
127	from South Asia through the Himalovas: new insights from atmospheric organic acids
420	Scientific Paparte 5, 0580, doi: 10.1038/srep00580, 2015
429	Davidson C I Jaffrezo I I Small M I Summers D W Olson M D and Borus D D
430	Traineton analysis of source regions influencing the south Greenland ice sheet during
422	the DVE2 are and acressed compling program. Atmos. Env. 27A, 2720, 2740, 1002
432	Eichlar A. Drötsch S. Oliviar S. Daving T. and Schwikowski M : A 750 year ion orra
433	record of next historic amissions from Siberian hand forests Coordina Des Lett. 26
434	L 18912 dei:10.1020/2000CL 028807, 2000
435	Eichler A. Willy, T. Drütsch S. Olivier S. Banine, T. and Schwilzewski, M.: An ice core
430	heard history of Sibarian forest fires since AD 1250 Over Sci Bay 20, 1027-1024
437	dai:10.1016/i guagairay 2011.02.007.2011
430	doi:10.1010/j.quascirev.2011.02.00/, 2011.
439	Lighting, G., Carrico, C. M., Kreidenweis, S. M., Coneu, J. L., Day, D. E., Maini, W. C.,
440	Lincoln, E., Hao, W. M., Innuma, Y., and Herrmann, H.: Determination of
441	elevente and the second second second by high-performance anon-exchange
442	chromatography with pulsed amperometric detection, <i>Atmos. Environ.</i> , 40, 5299-5311,
445	2000. Eressen M. D. and Lakshmanan, K., Using lawashwassen as a malagular markar for the lang
444	Fraser, IVI. P. and Lakshmanan, K.: Using levoglucosan as a molecular marker for the long-
445	ASCA 2000
440	4304, 2000.
447	Fu P. Q., Kawamura, K., Okuzawa, K., Agarwai, S. O., wang, O., Kanaya, T., and wang, Z.:
448	Organic molecular compositions and temporal variations of summertime mountain
449	dei org/10/1020/2008/D000000, 2008
450	dol.org/10.1029/2008JD009900, 2008.
451	Fu, P. Q., Kawamura, K., Pavuluri, C. M., Swammanunan, I., and Chen, J.: Molecular
432	characterization of urban organic aerosol in tropical india: contributions of primary
455	En D. Kamanana K. and Ming. K. Malamlar Characteristics of Marine Operation Accession
454	Fu, P., Kawamura, K., and Miura, K.: Molecular Characteristics of Marine Organic Aerosols
455	Loirected during a Round-ine-world Cruise, J. Geophys. Res. Atmos., 116, D15502,
450	doi: 10.1029/2011JD013004, 2011.
457	Utorio, C., N. Kenrwald, C. Barbante, M. Kalberer, A. C. F. King, E. R. Inomas, E. W.
438	wolli, P. Zennaro.: Prospects for reconstructing paleoenvironmental conditions from
439	bit 10.1016/j. massing 2018.01.007.2018
400	doi:10.1010/J.quascirev.2018.01.00/, 2018
401	(Jao, S., Liu, D., Kaiig, S., Kawainura, K., Wu, G., Zhang, G., and Cong, Z.: A new isolation
462	memor for biomass-burning fractis in show: measurements of <i>p</i> -nyuroxybenzoic,
403	vaining, and denydroableug acids, Aunos. Environ., 122, 142-147, 2015.

464	Hennigan, C. J., Sullivan, A. P., Collett, Jr. J. L., and Robinson, A. L.: Levoglucosan stability
465	in biomass burning particles exposed to hydroxyl radicals, Geophys. Res. Lett., 37,
466	L09806, doi:10.1029/2010GL043088, 2010.
467	Hoffmann, D., Tilgner A., Iinuma, Y., and Herrmann, H.: Atmospheric stability of
468	levoglucosan: a detailed laboratory and modeling study. Environ. Sci. Technol., 44,
469	694-699, doi: 10.1021/es902476f, 2010.
470	Holdsworth, G., Higuchi, K., Zielinski, G. A., Mayewski, P. A., Wahlen, M., Deck, B.,
471	Chylek, P., Johnson, B., and Damiano, P.: Historical biomass burning: Late 19th
472	century pioneer agriculture revolution in northern hemisphere ice core data and its
473	atmospheric interpretation, J. Geophys. Res., 101, 23, 317-23, 334, 1996.
474	Holdsworth, G., Krouse, H. R., and Nosal, M.: Ice core climate signals from Mount Logan,
475	Yukon AD. 1700-1987. In: Climate since AD 1500 (ed. R.S. Bradley and P. D. Jones),
476	Routledge, New Yourk, NY, 483-504, 1992.
477	Isaev, A. S., Korovin, G. N., Bartalev, S. A., Ershow, D. V., and Janetos, A.: Using remote
478	sensing to assess Russian forest fire carbon emissions. Climatic Change, 55, 235e249,
479	doi: 10.1023/A: 1020221123884, 2002.
480	Ivanova, G. A., Ivanov, V. A., Kukavskaya, E. A., and Soja, A. J.: The frequency of forest
481	fires in Scots pine stands of Tuva, Russia, Environ. Res. Lett., 5,
482	doi.org/10.1088/1748-9326/1085/1081/015002, 2010.
483	Ivanova, G. A., Ivanov, V. A., Kukavskaya, E. A., and Soja, A. J.: The frequency of forest
484	fires in Scots pine stands of Tuva, Russia, Environ, Res. Lett., 5, doi.org/10.1088/
485	1748-9326/1085/1081/015002, 2010.
486	Jordan, T. B., Seen, A. J., and Jacobsen, G. E.: Levoglucosan as an atmospheric tracer for
487	wood smoke, <i>Atmos. Environ.</i> , 40, 5316–5321, 2006.
488 480	Kaplan, Y., Wake, C. P., Kreutz, K. J., and Whitlow, S. I.: A 1000-yr record of forest fire
409	activity from Eclipse Iceneral, Fukon, Canada, The Holocene, 10, 2, 200-209, 2000.
490 /101	Angelis M. Barbante C. Wolff F. W. Huttarli M. and Waganbach D.:
497	Ammonium and non-sea salt sulfate in the EPICA ice cores as indicator of biological
493	activity in the Southern Ocean <i>Quate Science Reviews</i> 29, 313-323
494	doi:10.1016/i guascirev. 2009.11.009.2010
495	Kawamura K., Yokovama, K., Fujij, Y., and Watanabe, O. A.: Greenland ice core record of
496	low molecular weight dicarboxylic acids, ketocarboxylic acids, and dicarbonyls: A
497	trend from Little Ice Age to the present (1540 to 1989A.D.). J. Geophys. Res. 2001.
498	D1. 106, 1331-1345.
499	Kawamura, K. and Pavuluri, C. M.: New Directions: Need for better understanding of plastic
500	waste burning as inferred from high abundance of terephthalic acid in South Asian
501	aerosols, Atoms. Environ., 44, 5320-5321, 2010.
502	Kawamura, K., Izawa, Y., Mochida, M., and Shiraiwa, T.: Ice core records of biomass
503	burning tracers (levoglucosan and dehydroabietic, vanillic and p-hydroxybenzonic
504	acids) and total organic carbon for past 300 years in the Kamchatka Peninsula,
505	Northeast Asia, Geochimica. Cosmochimica. Acta., 99, 317-329, doi:
506	10.1016/j.gca.2012.08.006, 2012.
507	Keywood, M., Kanakidou, M., Stohl, A., Dentener, F., Grassi, G., Meyer, C. P., Torseth, K.,
508	Edwards, D., Thompson, A. M., Lohmann, U., and Burrows, J.: Fire in the Air:
509	Biomass burning impacts in a changing climate, Crit. Rev. Environ. Sci. Technol,
510	doi.org/10.1080/10643389.10642011.10604248, 2011.

511	Kundu, S., Kawamura, K., Andreae, T. W., Hoffer, A., and Andreae, M. O.: Molecular
512	distributions of dicarboxylic acids, ketocarboxylic acids and dicarbonyls in biomass
513	burning aerosols: implications for photochemical production and degradation in smoke
514	layers, Atmos. Chem. Phys., 10, 2209-2225, 2010.
515	Kunwar, B. and Kawamura, K.: One-year observations of carbonaceous and nitrogenous
516	components and major ions in the aerosols from subtropical Okinawa Island, an
517	outflow region of Asian dusts, Atmos, Chem. Phys., 14, 1819-1836, doi: 10, 5194/acp-
518	14-1819-2014 2014a
519	Kunwar B and Kawamura K : Seasonal distributions and sources of low molecular weight
520	dicarboxylic acids w-oxocarboxylic acids pyruvic acid a-dicarbonyls and fatty acids
521	in ambient aerosol from subtronical Okinawa in the western Pacific Rim Environ
522	Chem 11 673-689 2014b
523	Kunwar B. Torii K. Zhu C. Eu P. and Kawamura K. Springtime variations of organic
523	and inorganic constituents in sub micron aerosols (PM1 0) from Cane Hedo. Okinawa
525	doi: 10 1016/i atmoseny 2015 00 002 2016
525	Kuo I I Louchouern D and and Herbert B E : Influence of combustion conditions on
527	vialds of solvent extractable anhydrocugars and lignin phenols in charse Implications
528	for characterizations of biomass combustion residues. Chemosphere, 85, 707, 805
520	2011
529	2011. Lamarque LE Band T.C. Euring V. Graniar C. Hail A. Klimant Z. Lee D. Lieusse
531	C Miavilla A Owen B Schultz M G Shindell D Smith S I Stahfast F Van
522	Aardanna, L. Cooper, O. P., Kainuma M. Mahawald N. MaConnall, J. P. Naik V.
522	Raidenne, J., Cooper, O. K., Kanduna, M., Manowald, N., McConnen, J. K., Naik, V.,
533	historical (1850–2000) graded antihopogenic and
525	ambiantian Atmaa Cham Dhua 10,7017,7020, doi:10.5104/am 10.7017,2010
536	application, Atmos. Chem. 1 hys., 10, 7017–7059, doi:10.5194/acp-10-7017-2010,
527	2010. Lazaar M and Kawamura K : Siza distribution of law malagular weight disarbawylia saids
528	Lazaal, M. and Kawamura, K. Size distribution of low molecular weight dicarboxylic acids,
520	Island, the western North Desifie In H. I. Consold at al. (edg.) Closed Changes
540	Mankind Marine Emvironment Interactions doi 10 1007/078 00 481 8620 2 67 272
540	Mankina-Marine Environment Interactions, aol 10.1007/978-90-481-8050-5, 07, 575-
542	J.J. 2011.
542	Coophysica 25, 210, 142, 1007
545	Geophysics, 55, 219-145, 1997.
544	Coophysica 25, 210, 142, 1007
545	Merican I. D. Dartisin D. I. Caracillet C. Cavin D. C. Harrison S. D. History D. E. Laca
540	Marion, J. K., Baruein, P. J., Carcanici, C., Cavin, D. G., Harrison, S. P., Higuera, P. E., Joos,
547	F., Power, W. J., and Frence, I. C.: Climate and number influences on global biomass
540	burning over the past two millennia, Nat. Geosci. 1, $09/e/02$, doi: 10.1058/ngeo515,
550	2008. Manarahi D.A. Maalaan I. D. Manalaan M.C. Tariahing M.C. Wikisham S. I. Faalaan K.
550	Mayewski, P. A., Meeker, L. D., Morrison, M. C., Twickler, M. S., whilew, S. I., Ferland, K.
552	K., Ivieese, D., Legrand, Ivi. K., and Stelessen, J. P.: Greenland ice core signal
332 552	characteristics: An expanded view of climate change, J. Geophys. Res., 98, 12839-
333 554	1264/, 1995.
554	Micconneil, J. K., Edwards, P. R., Kok, G. L., Flanner, M. G., Zender, C. S., Saltzman, E. S.,
555 556	Banta, J. R., Pasteris, D. R., Carter, M. M., and Kahl, J. D. W.: 20th Century industrial
556	black carbon emissions altered Arctic climate forcing, Science, DOI:
557	10.1126/science.1144856, 2007.

558	Olivier, S., Blaser, C., Brütsch, S., Frolova, N., Gäggeler, H. W., Henderson, K. A., Palmer,
559	A. S., Papina, T., and Schwikowski, M.: Temporal variations of mineral dust, biogenic
560	tracers, and anthropogenic species during the past two centuries from Belukha ice core,
561	Siberian Altai., J. Geophys. Res., 111, D05309, doi: 10.1029/2005JD005830, 2006.
562	Pavuluri, C. M., Kawamura, K., and Swaminathan, T.: Water-soluble organic carbon,
563	dicarboxylic acids, ketoacids and α -dicarbonyls in the tropical Indian aerosols, J.
564	Geophys. ResAtmosphere, Vol. 115, doi: 10.1029/2009JD012661, 2010.
565	Pokhrel, A., K. Kawamura, O. Seki, S. Matoba, T. Shiraiwa.: Ice core profiles of saturated
566	fatty acids (C12:0-C30:0) and oleic acid (C18:1) from southern Alaska since 1734 AD:
567	A link to climate change in the Northern Hemisphere, Atmos. Environ., 100, 202-209.
568	2015
569	Pokhrel, A., K. Kawamura, K. Ono, O. Seki, P. Fu, S. Matoba and T. Shiraiwa.: Ice core
570	records of monoterpene- and isoprene-SOA tracers from Aurora Peak in Alaska since
571	1660s: Implication for climate change variability in the North Pacific Rim, Atmos.
572	Environ., 130, 105-112, 2016.
573	Pokhrel, A.: Studies on ice core records of dicarboxylic acids, @-oxocarboxylic acids, pyruvic
574	acid. α -dicarbonyls and fatty acids from southern Alaska since 1665 AD: A link to
575	climate change in the Northern Hemisphere. Ph. D thesis, Hokkaido University.
576	HUSCAP 11786, http://hdl.handle.net/2115/59331, 2015.
577	Robock, A.: Surface cooling due to smoke from biomass burning. In: Global biomass burning
578	(ed. J. S. levine), MIT press, Cambridge, Mass., 463-476, 1991.
579	Shafizadeh, F.: The chemistry of pyrolysis and combustion, <i>Adv. Chem. Ser.</i> , 491-529, 1984.
580	Shiraiwa, T.: Simoneit B. R. T., Kobayashi, M., Mochida, M., Kawamura, K., Lee, M., Lim,
581	H. J., Turpin, B. J., and Komazaki, Y.: Composition and major sources of organic
582	compounds of aerosol particulate matter sampled during the ACE-Asia campaign, J.
583	Geophys. Res. Atmos., 109, D19S10, doi.org/10.1029/2004JD004598, 2004.
584	Simoneit, B. R. T. and Elias, V. O.: Detecting organic tracers from biomass burning in the
585	atmosphere, Mar. Pollut. Bull., 42, 805-810, 2001.
586	Simoneit, B. R. T., Rogge, W. F., Mazurek, M. A., Standley, L. J., Hildemann, L. M., and
587	Cass, G. R.: Lignin pyrolysis products, lignans, and resin acids as specific tracers of
588	plant classes in emissions from biomass combustion, Environ. Sci. Technol., 27, 2533-
589	2541, 1993.
590	Simoneit, B. R. T.: Biomass burning-a review of organic tracers for smoke from incomplete
591	combustion, Appl. Geochem., 17, 129-162, 2002.
592	Simoneit, B. R. T., Schauer, J. J., Nolte, C. G., Oros, D. R. and Elias, V. O., Fraser, M. P.,
593	Rogge, W. F., and Cass, G. R.: Levoglucosan, a tracer for cellulose in biomass burning
594	and atmospheric particles, Atmos. Environ., 33, 173-182, 1999.
595	Tsai, Y. I., Sopajaree, K., Chotruksa, A., Wu, H. C., and Kuo, S. C.: Source indicators of
596	biomass burning associated with inorganic salts and carboxylates in dry season
597	ambient aerosol in Chiang Mai Basin, Thailand, Atmos. Environ., 78, 93-104, doi:
598	10.1016/j.atmosenv.2012.09.040, 2013.
599	Tsushima, A., Matoba, S., Shiraiwa, T., Okamoto, S., Sasaki, H., Solie D. and Yoshikawam
600	K.:Reconstruction of recent climate change in Alaska from the Aurora Peak ice core,
601	central Alaska, Clim. Past, 11, 217-226, doi:10.5194/cp-11-217-2015, 2015.
602	Tsuhima, A.: A study on reconstruction of paleo-environmental changes in the northern North
603	Pacific region from an alpine ice core, A Doctor's thesis, Hokkaido University, pp.78,
604	2015, doi:10.14943/doctoral.k11790.

23

605	Verma, S. K., Kawamura, K., Chen, J., Fu, P., and Zhu, C.: Thirteen years of observations on
606	biomass burning organic tracers over Chichijima Island in the western North Pacific:
607	An outflow region of Asian aerosols, J. Geophys. Res. Atmos., 120, 4155-4168, doi:
608	10.1002/2014JD022224, 2015.
609	Wallenius, T. H., Pitkänen, A., Kuuluvainen, T., Pennanen, J., and Karttunen, H.: Fire history
610	and forest age distribution of an unmanaged Picea abies dominated landscape, Can. J.
611	For. Res., 35, 1540e1552, doi: 10.1139/x05-050, 2005.
612	Wang, G., Kawamura, K., Xie, M., Hu, S., Cao, J., An, Z., Waston, J. G., and Chow, J. C.:
613	Organic Molecular Compositions and Size Distributions of Chinese Summer and
614	Autumn Aerosols from Nanjing: Characteristic Haze Event Caused by Wheat Straw
615	Burning, Environ. Sci. Technol., 43 (17), 6493-6499, 2009.
616	Whitlow, S., Mayewski, P., Dibb, J., Holdsworth, G., and Twickler, M.: An ice-core-based
617	record of biomass burning in the Arctic and Subarctic, 1750-1980, Tellus, 46, 234-242,
618	issn 0280-6509, 1994.
619	Wolff, E. W.: Chemical signals of past climate and environment from polar ice cores and firn
620	air, Chem. Soc. Rev., 41, 6247-6258, doi: 10.1039/c2cs35227c, 2012.
621	Yang, Q., Mayewski, P. A., Whitlow, S., Twickler, M., Morrison, M., Talbot, R., Dibb, J. E.,
622	and Linder, E.: Global perspective of nitrate flux in ice cores, J. Geophys. Res., 100,
623	D3, 5113-5121, 94JD03115, 1995.
624	Yasunari, T. J. and Yamazaki, K.: Origins of air mass over an Alaskan glacier and
625	implications for ice core studies in the North pacific regions, SOLA, 5, 077-080, doi:
626	10.2151/sola.2009-020, 2009.
627	Zhu, C., Kawamura, K., and Kunwar, B.: Effect of biomass burning over the western North
628	Pacific Rim: wintertime maxima of anhydrosugars in ambient aerosols from Okinawa,
629	Atmos. Chem. Phys., 15, 1-15, doi: 10.5194/acp-15-1-2015, 2015.

24

631 632

- 634 Figure 1. Geographical location of Aurora Peak in Alaska, where 180-meter long ice
- 635 core was drilled on the saddle of this peak in 2008^{16} (*Pokhrel*, 2015).

636

637 Figure 2. Concentration changes of (a) levoglucosan, (b) dehydroabietic, and (c)

vanillic acids in the ice core collected from Aurora Peak in Alaska for 1665-2008.

- 641 (b) vanillic and levoglucosan, and (c) levoglucosan and dehydroabietic acid in the
- 642 Alaska ice core records collected from the saddle of Aurora Peak after the Great
- 643 Pacific Climate Shift (1977-2007).
- 644
- 645

646

Figure 4. Correlations of the concentrations of (a) NO_3^- , (b) NO_2^- , (c) nss- $SO_4^{2^-}$, and

648 (d) nss-K⁺ with levoglucosan in the Alaskan ice core samples collected from saddle of

649 Aurora Peak (1665-2007).

28

651 Figure 5. The MODIS fire spot (a-f) of Alaskan regions since 2001 to 2007, when

652 levoglucosan (2005, 2006, and 2004 AD), dehydroabetic (2007, 2004, and 2006) and

- vanillic (2005, 2007 and 2006) acids showed higher spikes in order to first, second
- and third positions, respectively.